Nilai lim_(x→1)⁡ ((x^2+x−2) sin⁡(x^2-1))/((x^2-2x+1))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x^2+x-2) \sin(x^2-1)}{x^2-2x+1} = \cdots \)

  1. \( -4 \)
  2. \( -\frac{3}{4} \)
  3. \( \frac{1}{2} \)
  4. 3
  5. 6

(UM UNDIP 2011)

Pembahasan:

\begin{aligned} \lim_{x \to 1} \ \frac{(x^2+x-2) \sin(x^2-1)}{x^2-2x+1} &= \lim_{x \to 1} \ \frac{(x+2)(x-1) \sin(x+1)(x-1)}{(x-1)(x-1)} \\[8pt] &= \lim_{x \to 1} \ \frac{(x+2)\sin(x+1)(x-1)}{(x-1)} \\[8pt] &= \lim_{x \to 1} \ (x+2) \cdot \lim_{x \to 1} \ \frac{\sin((x+1)(x-1))}{(x-1)} \\[8pt] &= \lim_{x \to 1} (x+2) \cdot (x+1) \\[8pt] &= (1+2)(1+1) = 3 \cdot 2 = 6 \end{aligned}

Jawaban E.